Solar Cell Utility

The Solar Cell Utility[†] provides an optical and electronic simulation solution for solar cell devices. The utility simplifies common tasks associated with solar cell design and aids in the rigorous computation of J-V curves, quantum efficiency spectra, and overall cell efficiency. The basic version of the Solar Cell Utility uses a simple electronic model and operates with one or more RSoft optical simulation tools^{††}. If a rigorous electronic modeling solution is desired, LaserMOD can be used. The Solar Cell Utility LaserMOD option provides a limited license of LaserMOD for this purpose.

Benefits

- ▶ Rigorous optical simulation is performed by one of RSoft's passive optical design tools.
- Can use either a simple electronic model or RSoft's rigorous LaserMOD simulation tool.
- Fully integrated into the RSoft CAD Environment (page 6).

Applications

- ▶ Solar cell design
- ▶ Solar cells with diffractive optical elements (DOEs)
- > Solar cells with randomly textured material interfaces
- Ideal for investigating the electronic nature of solar cells

Featured Application

Schematic of solar cell structure along with solar cell efficiency computed by DiffractMOD as a function of the period of a diffractive optical element within the cell.

[†]The Solar Cell Utility provides users of some of the RSoft optical simulation tools the functionality described here. All simulation tools are licensed separately.

^{††}Consult a Synopsys representive to determine which combinations of products are currently supported.

Features

- Arbitrary solar cell geometry can easily be created in the RSoft CAD.
- Important material properties such as frequency-dependent complex refractive indexes can be used to correctly model absorptive materials.
- Simple electronic modeling via modified Ideal Diode equation; rigorous modeling via LaserMOD tool.
- ▶ Uses the AM1.5 Solar Spectrum as incident spectrum by default; a user-specified spectrum can also be used.
- ▶ Direct user control over shadowing, filling-factor, and collection efficiency.
- Accounting of parasitic resistances in both simple and rigorous electronic models.
- Outputs include cell efficiency, J-V curves, and quantum efficiency spectra in addition to the standard output from the simulation tool(s) used (DiffractMOD, FullWAVE, and/or LaserMOD).
- Automated parametric studies and design optimization using MOST (page 24).

J-V curve for solar cell with randomly textured interfaces computed using Ideal Diode electrical model and FullWAVE.

J-V curve for the same solar cell above computed with LaserMOD and FullWAVE.

SEE PAGE 42 FOR SYSTEM REQUIREMENTS